Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 108: 154510, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332383

RESUMO

BACKGROUND: The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE: APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD: The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS: Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION: The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Produtos Biológicos/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35992378

RESUMO

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovial hyperplasia, cartilage destruction and bone erosion. Visnagin (VIS) is a proven anti-inflammatory agent and in this study, we aimed to evaluate the anti-arthritic activity of VIS when administered via intra-articular (I.A.) route of administration. Materials and methods: RAW 264.7 â€‹cells were stimulated with lipopolysaccharide (LPS) (1 â€‹µg/mL) and treated with VIS at concentrations of 12.5 and 25 â€‹µM. Arthritis was induced in Sprague Dawley rats by administering Complete Freund's Adjuvant (CFA) (1 â€‹mg/mL) through (I.A.) route and treated with VIS via (I.A.) route at doses of 3 and 10 â€‹mg/kg twice a week for 3 weeks. Protective effects were assessed by arthritic score, behavioral studies for pain evaluation, radiological assessment, histopathological examination and molecular studies. Results: Our results indicated that VIS significantly reduced LPS induced inflammation in RAW 264.7 â€‹cells. While in arthritic rats, VIS reduced the disease scorings with improvement towards pain. Pathological examination demonstrated that VIS reduced knee joint inflammation and cartilage destruction. Radiographic analysis and molecular studies also supported the protective effects of VIS. Conclusion: The results of the study imply that VIS exerted potential anti-inflammatory and anti-arthritic activity in in vitro and in vivo models of RA.

3.
Life Sci ; 295: 120372, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143824

RESUMO

Prolonged exposure to the pharmacological doses of disease-modifying anti-rheumatic drugs (DMARDs) often results in major organ toxicities resulting in poor patient compliance. Methotrexate (MTX) is one of the commonly prescribed DMARDs for the treatment of arthritis, which results in vital organ dysfunction. To retain the anti-arthritic activity of MTX with the reduction in toxicities, combination therapies are warranted. Nimbolide (NMB) is a potent anticancer, anti-inflammatory and anti-fibrotic agent whose potential has been demonstrated in various pre-clinical models. Monoarthritis was developed with Complete Freund's Adjuvant in the knees of Wistar rats and treatment was given with either NMB (3 mg/kg/day) or MTX (2 mg/kg/week) alone or combination therapy (NMB + MTX). The anti-arthritic effects were evaluated by arthritic scoring, radiological imaging, synovial tissue proteins analysis, and histopathological staining. While hepato-renal toxicity was assessed in serum by evaluating the kidney and liver functional parameters, in tissues by oxidative-nitrosative stress markers, and pro-inflammatory cytokines levels. Histopathological analysis was performed to study the extent of tissue damage. Molecular studies like immunoblotting and immunohistochemistry were performed to understand the effect of combination therapy. We thereby report that monotherapy with either NMB or MTX exhibited significant anti-arthritic effects, while combination therapy resulted in augmented anti-arthritic effects with significant reduction in hepato-renal toxicity produced by MTX probably through anti-inflammatory and anti-oxidant effects. Therefore, our proposed combination of NMB and MTX may serve as a potential strategy for the effective management of arthritis.


Assuntos
Artrite/tratamento farmacológico , Limoninas/farmacologia , Metotrexato/farmacologia , Animais , Antioxidantes/farmacologia , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Quimioterapia Combinada/métodos , Feminino , Adjuvante de Freund/farmacologia , Limoninas/metabolismo , Fígado/metabolismo , Metotrexato/toxicidade , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar
4.
Bioorg Chem ; 117: 105461, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753060

RESUMO

The effect of ß-carboline motif as cap for HDAC inhibitors containing cinnamic acid as linker and benzamides as zinc binding group was examined in this study. A series of ß-carboline-cinnamide conjugates have been synthesized and evaluated for their HDAC inhibitory activity and in vitro cytotoxicity against different human cancer cell lines. Almost all the compounds exhibited superior HDAC inhibitory activity than the standard drug Entinostat for in vitro enzymatic assay. Among the tested compounds, 7h displayed a noteworthy potency with an IC50 value of 0.70 ± 0.15 µM against HCT-15 cell line when compared to the standard drug Entinostat (IC50 of 3.87 ± 0.62 µM). The traditional apoptosis assays such as nuclear morphological alterations, AO/EB, DAPI, and Annexin-V/PI staining revealed the antiproliferative activity of 7h while depolarization of mitochondrial membrane potential by JC-1 was observed in dose-dependent manner. Cell cycle analysis also unveiled the typical accumulation of cells in G2M phase and sub-G1/S phase arrest. In addition, immunoblot analysis for compound 7h on HCT-15 indicated selective inhibition of the protein expression of class I HDAC 2 and 3 isoforms. Molecular docking analysis of compound 7h revealed that it can prominent binding with the active pocket of the HDAC 2. These finding suggest that the compound 7h can be a promising lead candidate for further investigation in the development of novel anti-cancer drug potentially inhibiting HDACs.


Assuntos
Antineoplásicos/farmacologia , Carbolinas/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , ortoaminobenzoatos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carbolinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , ortoaminobenzoatos/química
5.
Front Pharmacol ; 12: 612659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566630

RESUMO

Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.

6.
Life Sci ; 266: 118911, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333049

RESUMO

AIM: Activation of transmembrane Notch-1 receptors through inflammatory cytokines is highly regulated by STAT-3 and NF-κB phosphorylation. Nimbolide (NMB) exhibits potent anti-inflammatory, anti-fibrotic, anticancer activities by targeting various pathways. Here, we have investigated the effect of NMB in regulation of STAT-3/NF-κB/Notch-1 axis in complete Freund's adjuvant (CFA) induced inflammatory arthritis (IA) model. MAIN METHODS: The anti-inflammatory and anti-arthritic activity of NMB was evaluated both in vitro (IL-1ß stimulated HIG-82 synovial fibroblasts) and in vivo (CFA induced rat model of IA) models. In vitro anti-arthritic activity was assessed by anti-migratory effect, while in vivo effects were evaluated through radiological and histological analysis. The effect of NMB on STAT-3, NF-κB, Notch-1 signaling pathways and proinflammatory cytokines were studied using western blot, immunohistochemistry and ELISA methods. Key findings NMB attenuated the migration of synovial fibroblasts in vitro. It reduced the progression of arthritis as evidenced from the improved radiological and histological abnormalities in arthritic rats. NMB significantly suppressed the nitrosooxidative stress and levels of pro-inflammatory cytokines. NMB also exhibited remarkable protective activity against upregulation of MAPK, STAT-3 and NF-κB phosphorylation mediated Notch-1 signaling pathway in synovial tissue of arthritic rats. SIGNIFICANCE: NMB may have clinical therapeutic value in rheumatoid arthritis by inhibiting STAT-3/NF-κB/Notch-1 axis and also by reducing the levels of proinflammatory cytokines.


Assuntos
Artrite Experimental/tratamento farmacológico , Adjuvante de Freund/toxicidade , Inflamação/tratamento farmacológico , Interleucina-1beta/toxicidade , Limoninas/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Ratos , Ratos Wistar , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
Bioorg Chem ; 103: 104191, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891862

RESUMO

A new series of N-(2-(1H-benzo[d]imidazol-2-yl)phenyl) cinnamides was prepared and evaluated for their in vitro cytotoxic activity using various cancer cell lines viz. A549 (human non-small cell lung cancer), MDA-MB-231 (human triple negative breast cancer), B16-F10 (mouse melanoma), BT-474 (human breast cancer), and 4 T1 (mouse triple negative breast cancer). In the series of tested compounds, 12h showed potent cytotoxic activity against non-small cell lung cancer cell line with IC50 value of 0.29 ± 0.02 µM. The cytoxicity of most potent compound 12h was also tested on NRK-52E (normal rat kidney epithelial cell line) and showed less cytotoxicity compared to cancer cells. Tubulin polymerization assay indicated that the compound 12h was able to impede the cell division by inhibiting tubulin polymerization. Moreover, molecular docking study also suggested the binding of 12h at the colchicine-binding site of the tubulin protein. Cell cycle analysis revealed that the compound 12h arrests G2/M phase. In addition, 12h induced apoptosis in A549 cell lines was evaluated by various staining studies like acridine orange, DAPI, analysis of mitochondrial membrane potential, annexin V-FITC, and DCFDA assays.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Cinamatos/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Benzimidazóis/síntese química , Benzimidazóis/metabolismo , Linhagem Celular Tumoral , Cinamatos/síntese química , Cinamatos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo
8.
Bioorg Med Chem Lett ; 30(18): 127432, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717368

RESUMO

The new derivatives based on (Z)-3-(arylamino)-1-(3-phenylimidazo[1,5-a]pyridin-1-yl)prop-2-en-1-one scaffold was synthesized and evaluated for their in vitro cytotoxic potential against a panel of cancer cell lines, viz., A549 (human lung cancer), HCT-116 (human colorectal cancer), B16F10 (murine melanoma cancer), BT-474 (human breast cancer), and MDA-MB-231 (human triple-negative breast cancer). Among them, many of the synthesized compounds exhibited promising cytotoxic potential against the panel of tested cancer cell lines with IC50 <30 µM. Based on the preliminary screening results, the structure-activity relationship (SAR) of the compounds was established. Among the synthesized compounds, 15i displayed a potential anti-proliferative activity against HCT-116 cancer cell line with an IC50 value of 1.21 ± 0.14 µM. Flow cytometric analysis revealed that compound 15i arrested the G0/G1 phase of the cell cycle. Moreover, increased reactive oxygen species (ROS) generation, clonogenic assay, acridine orange staining, DAPI nuclear staining, measurement of mitochondrial membrane potential (ΔΨm), and annexin V-FITC assays revealed that compound 15i promoted cell death through apoptosis.


Assuntos
Antineoplásicos/síntese química , Citotoxinas/química , Piridinas/síntese química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Imagem Óptica , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
9.
Phytother Res ; 34(4): 825-835, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31769107

RESUMO

Acute pancreatitis (AP) is a disorder of the pancreas marked by profound inflammation and oxidative stress. Phytoconstituents presents an important toolbox of preventive strategies to combat inflammatory disorders. To this end, we selected the active constituent of Crocus sativus, crocin for evaluation against cerulein-induced AP, owing to its promising antiinflammatory activity in acute as well as chronic inflammatory conditions. The animals were randomly divided into five groups comprising of normal control, cerulein control, crocin low dose (30 mg/kg), crocin high dose (100 mg/kg), and crocin control (100 mg/kg). Various biochemical parameters and the levels of inflammatory cytokines and p65-NFκB were measured. The mechanism was investigated by histology and immunohistochemistry. We found that crocin significantly reduced the pancreatic edema, amylase, and lipase levels. It abrogated the oxidative stress incurred by cerulein challenge. We found that crocin modulated the pancreatic inflammatory cytokine levels. Crocin perturbed the nuclear translocation of p65-NFκB. Crocin reverted the pancreatic histology associated with AP. Furthermore, it upregulated the expression of Nrf-2 and downregulated the expression of IL-6, TNF-α, nitrotyrosine, and NFκB. Cumulatively, these results indicate that crocin has promising potential to prevent cerulein induced AP and regular intake of saffron can prove beneficial for the pancreatic health.


Assuntos
Anti-Inflamatórios/farmacologia , Carotenoides/farmacologia , Ceruletídeo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/prevenção & controle , Doença Aguda , Animais , Anti-Inflamatórios/isolamento & purificação , Carotenoides/isolamento & purificação , Crocus/química , Citoproteção/efeitos dos fármacos , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/metabolismo , Pancreatite/patologia , Fitoterapia
10.
ChemMedChem ; 14(24): 2052-2060, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674147

RESUMO

Molecular hybridization approach is a promising structural modification tool to design new chemical entities (NCEs) by mimicking two different pharmacophoric units into one scaffold to enhance the biological properties. With this aim, combretastatin-A4 acids were integrated with sulfonyl piperazine scaffolds as a one molecular platform and evaluated for their in vitro antiproliferative activity against a panel of human cancer lines cell lines namely, lung (A549), mouse melanoma (B16F10), breast (MDA MB-231and MCF-7) and colon (HCT-15) by MTT assay. Amongst which the compound (E)-3-(4-Chlorophenyl)-1-(4-((4-chlorophenyl)sulfonyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (5 ab) displayed significant IC50 values in the range of 0.36 to 7.08 µm against the selected cancer cell lines. Moreover, 5 ab was found to be the most potent member of this series with IC50 0.36±0.02 µm. Further investigations revealed that the compound 5 ab displayed significant inhibition of tubulin assembly with IC50 5.24±0.06 µm and molecular docking studies also disclosed the binding of 5 ab effectively in CA4 binding space at the colchicine binding site. The flow cytometric analysis demonstrated that the compound 5 ab caused cell cycle arrest at G2/M phase in A549 cells. Compound 5 ab induced apoptosis in A549 cells which was further evaluated by different staining assays such as DAPI and AO which undoubtedly speculated, the induction of apoptosis. To study the anti-migration with 5 ab, cell migration/scratch wound assay was performed and the extent of apoptosis was studied by Annexin-V, including mitochondrial potential by JC-1 staining.


Assuntos
Antineoplásicos/farmacologia , Piperazinas/farmacologia , Estilbenos/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Polimerização/efeitos dos fármacos , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
11.
Nanomedicine (Lond) ; 14(14): 1805-1825, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267840

RESUMO

Aim: The present study was carried out to assess the effect of nanoceria (NC) on pancreatic inflammation caused by cerulein. Methods: NC was characterized and in vitro studies were carried out in murine macrophages. The in vivo effects were tested on cerulein-induced pancreatitis. Results:In vitro treatment with NC remarkably protected macrophages from lipopolysaccharide-induced inflammation and oxidative stress as evident from the results of 2',7'-dichlorofluorescin diacetate, JC-1 and MitoSox staining. In vivo treatment with NC showed potent superoxide dismutase and catalase mimetic activity, antipancreatitis activity and improved histology. Furthermore, it reduced the expression of p65-NF-κB and acetylation of histone H3 at lysine K14, K56 and K79 residues. Conclusion: We for the first time, demonstrate that NC may be a promising candidate for the therapy of pancreatitis.


Assuntos
Cério/uso terapêutico , Ceruletídeo/efeitos adversos , Inflamação/tratamento farmacológico , Pancreatite/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cério/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pancreatite/metabolismo , Pancreatite/patologia , Células RAW 264.7 , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
12.
Biofactors ; 45(5): 750-762, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31188510

RESUMO

Chronic kidney disease (CKD) is one of the major global health concerns and is responsible for end-stage renal disease (ESRD) complications. Inflammation plays a pivotal role in the progression of CKD. In the present study, we evaluated the renoprotective effects of a potent immunomodulator steroidal lactone, Withaferin A (WfA), in an animal model of renal injury (unilateral ureteral obstruction, UUO) and further investigated if the inhibition of inflammatory signaling can be a useful approach to reduce renal injury. Animals were randomly divided into five groups: Sham control, UUO control, WfA control, WfA low dose (1 mg/kg), and WfA high dose (3 mg/kg). Oxidative stress was measured by the estimation of reduced glutathione and lipid peroxidation levels. H&E and Picrosirius Red staining were performed to assess the extent of histological damage and collagen deposition. Furthermore, the molecular mechanism of the WfA effects was explored by immunohistochemistry, enzyme-linked immunosorbent assay, multiplex analysis of transforming growth factor ß (TGF-ß) pathway, and an array of inflammatory cytokines/chemokines. Interestingly, our pharmacological intervention significantly attenuated tissue collagen, inflammatory signaling, and macrophage signaling. WfA intervention abrogated the inflammatory signaling as evident from the modulated levels of chemokines and cytokines. The levels of TGF-ß along with downstream signaling molecules were also attenuated by WfA treatment as revealed by inhibition in the expression of TGF-ß1, TGF-ß2, p-Smad2, p-Smad3, total Smad4, p-Akt, and p-ERK. We, to the best of our knowledge, prove for the first time that WfA has potential renoprotective activity against UUO-induced nephropathy due to its outstanding anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/tratamento farmacológico , Vitanolídeos/farmacologia , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutationa/agonistas , Glutationa/metabolismo , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Resultado do Tratamento , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
13.
Nanomedicine ; 18: 54-65, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851439

RESUMO

Oxidative stress plays a major role in acute pancreatitis (AP), leading to massive macrophage infiltration. Nanoyttria (NY) possesses potent free radical scavenging activity. As reactive oxygen species and inflammation play major role in AP, we hypothesized that NY may alleviate cerulein induced AP. NY ameliorated LPS induced oxidative stress in vitro. It reduced ROS, superoxide radical generation and restored the mitochondrial membrane potential in macrophages. Interestingly, NY reduced plasma amylase and lipase levels and attenuated the mitochondrial stress and inflammatory markers. NY suppressed the recruitment of inflammatory cells around the damaged pancreatic acinar cells. Furthermore, NY intervention perturbed the course of AP via reduction of endoplasmic reticulum (ER) stress markers (BiP, IRE1 and Ero1-Lα), and molecular chaperones (Hsp27 and Hsp70). We, to the best of our knowledge, report for first time that NY can attenuate experimental AP by restoration of mitochondrial and ER homeostasis through Nrf2/NFκB pathway modulation.


Assuntos
Ceruletídeo/metabolismo , Nanopartículas/química , Pancreatite/patologia , Índice de Gravidade de Doença , Ítrio/química , Doença Aguda , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Estresse do Retículo Endoplasmático , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Nanopartículas/ultraestrutura , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Nitrosação , Oxirredução , Estresse Oxidativo , Pâncreas/patologia , Pancreatite/sangue , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
14.
Biomed Pharmacother ; 112: 108629, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798137

RESUMO

Acute pancreatitis (AP) is an exocrine dysfunction of the pancreas where oxidative stress and inflammatory cytokines play a key role in induction and progression of the disease. Studies have demonstrated that antioxidant phytochemicals have been effective in improving pancreatitis condition, but there are no clinically approved drugs till date. Our study aims to assess the preventive activity of visnagin, a novel phytochemical isolated from Ammi visnaga against cerulein induced AP. Male Swiss albino mice were divided into six groups (n = 6, each group) comprising of normal control, cerulein control, seven day pre-treatment with visnagin at three dose levels; visnagin low dose (10 mg/kg), visnagin mid dose (30 mg/kg), visnagin high dose (60 mg/kg) and visnagin control (60 mg/kg). AP was induced by six injections of cerulein (50 µg/kg, i.p.) on the 7th day and the animals were sacrificed after 6 h of last cerulein dose. Various markers of pancreatic function, oxidative stress and inflammation were assessed. Visnagin was found to be effective in reducing plasma amylase and lipase levels, reduced cerulein induced oxidative stress. Visnagin dose dependently decreased the expression of IL-1ß, IL-6, TNF-α and IL-17. It attenuated the levels of nuclear p65-NFκB. Visnagin improved the antioxidant defence by improving Nrf2 expression and halted pancreatic inflammation by suppressing NFκB and nitrotyrosine expression in the acinar cells. Further, it attenuated the expression of markers of multiple organ dysfunction syndrome and reduced inflammatory cytokines in lungs and intestine. Cumulatively, these findings indicate that visnagin has substantial potential to prevent cerulein induced AP.


Assuntos
Anti-Inflamatórios/uso terapêutico , Quelina/uso terapêutico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Pancreatite/tratamento farmacológico , Doença Aguda , Ammi/química , Amilases/sangue , Animais , Anti-Inflamatórios/isolamento & purificação , Ceruletídeo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quelina/isolamento & purificação , Lipase/sangue , Masculino , Camundongos , Insuficiência de Múltiplos Órgãos/metabolismo , Pancreatite/imunologia , Pancreatite/metabolismo , Transdução de Sinais
15.
Bioorg Chem ; 86: 210-223, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30716619

RESUMO

A new series of biphenyl methylene indolinones has been designed, synthesized and evaluated for their in vitro antiproliferative activity against various cancer cell lines like DU-145 (prostate cancer cell line), 4T1 (mouse breast cancer cell line), MDA-MB-231 (human breast cancer cell line), BT-549 (human breast cancer cell line), T24 (human urinary bladder carcinoma cell line), and HeLa (cervical cancer cell line). Among the series, compound 10e showed potent in vitro cytotoxic activity against HeLa and DU-145 cancer cell lines with IC50 value of 1.74 ±â€¯0.69 µM and 1.68 ±â€¯1.06 µM respectively. To understand the underlying mechanism of most potent cytotoxic compound 10e, various mechanistic studies were carried out on DU-145 cell lines. Cell cycle analysis results revealed that these conjugates affect both G0/G1 and G2/M phase of the cycle, tubulin binding assay resulted that compound 10e interrupting microtubule network formation by inhibiting tubulin polymerization with IC50 value of 4.96 ±â€¯0.05 µM. Moreover, molecular docking of 10e on colchicine binding site of the tubulin explains the interaction of 10e with tubulin. Clonogenic assay indicated inhibition of colony formation by compound 10e in a dose dependent manner. In addition, morphological changes were clearly observed by AO/EB and DAPI staining studies. Moreover, ROS detection using DCFDA, JC-1, and annexin V-FITC assays demonstrated the significant apoptosis induction by 10e.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Oxindóis/farmacologia , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Espécies Reativas de Oxigênio/análise , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Eur J Pharm Sci ; 130: 200-214, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731237

RESUMO

Curcumin (cur) is a well known plant flavonoid with pleiotropic pharmacological activities. However, due to its poor bioavailability those therapeutic benefits are still out of reach for patient community. The main aim of our study was to prepare sustained release cur microparticles (CuMPs) with Poly (lactic-co-glycolic acid) (PLGA), an FDA approved biodegradable polymer and to assess their pharmacological potential in multiple low doses streptozotocin (MLD-STZ) induced type 1 diabetes mellitus (T1DM). CuMPs were formulated and characterized for size (12.71 ±â€¯4.20 µm) and encapsulation efficiency (85.10 ±â€¯2.33%) with 28% drug loading. In vitro release and in vivo pharmacokinetics studies showed promising results of sustained release of cur from CuMPs. With this here we report a strategy that single administration of CuMPs may fill the therapeutic window that is missing from free drug repeated administration and low bioavailability of cur. Moving forward with this concept, we compared the therapeutic effects of CuMPs (equivalent to 7.5 mg/kg cur with free cur orally (100 mg/kg) and intraperitoneally (7.5 mg/kg) administered daily in MLD-STZ challenged animals). CuMPs exhibited superior effects compared to daily administration free drug given either orally or i.p. in terms of lowering the blood glucose levels, improved glucose clearance as evident from results of i.p. glucose tolerance test (IPGTT). Interestingly, we observed a remarkable reduction in diabetes incidence in CuMPs groups (only one out of six animals i.e. 16.6%). Moreover, plasma and tissue levels of insulin indicated superior effect of CuMPs. In addition, immunohistochemical analysis of insulin in pancreatic ß-cells further confirmed the improved therapeutic benefit with significant increase in insulin signal with CuMPs. Amelioration of oxidative stress and inflammation of CuMPs was observed as the molecular mechanism behind the observed superior pharmacological effects with CuMPs. Cumulatively, our sustained release CuMPs formulation may serve as a bridge in overcoming the poor pharmacokinetics issues associated with cur and may hasten the clinical translation of cur.


Assuntos
Curcumina/administração & dosagem , Curcumina/farmacocinética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Microesferas , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Tamanho da Partícula , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
17.
Biomed Pharmacother ; 106: 1428-1440, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119216

RESUMO

Type 1 diabetes mellitus (T1DM) is one of the major metabolic disorders with life-long dependence on insulin. The present study was designed to evaluate the antioxidant and anti-diabetic potential of Withaferin A (WA), the active constituent of Withania somnifera in multiple low doses of Streptozotocin (MLD-STZ) induced T1DM. STZ (40 mg/Kg) was administered intraperitoneally (i.p.) for 5 consecutive days to male Swiss albino mice to induce T1DM. Mice were concurrently treated with WA (2 & 10 mg/Kg). Blood glucose levels, intraperitoneal glucose tolerance test, oxidative stress parameters were estimated biochemically (MDA, GSH) and immunohistochemically (Nrf2, NFκB). In addition, inflammatory cytokines, and insulin levels were quantified by ELISA method. Apoptosis was assessed by immunohistochemical staining for cleaved-caspase-3 and TUNEL assay. WA treatment significantly reduced the blood glucose levels and improved glucose clearance. Strikingly, we observed a significant reduction in the incidence of diabetes upon WA treatment and only 2 out of 8 (2/8 = 25%) animals were diabetic. WA ameliorated the MLD-STZ induced oxidative and nitrosative stress. Furthermore, WA exhibited promising anti-inflammatory effect as evident from reduction in the levels of IL-6 (p < 0.05) and TNF-α (p < 0.05) compared to diabetic mice. In addition, insulitis scoring and IHC for Nrf2 and NFκB indicated promising anti-diabetic effect. WA reduced MLD-STZ induced DNA fragmentation and apoptosis, further supporting the observed protective effect. We, to the best of our knowledge, report for the first time that WA can effectively combat MLD-STZ induced T1DM via modulation of Nrf2/NFκB signaling and holds substantial potential for therapy of T1DM.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 1/prevenção & controle , Hipoglicemiantes/farmacologia , Pâncreas/efeitos dos fármacos , Estreptozocina , Vitanolídeos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/patologia , Relação Dose-Resposta a Droga , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Mediadores da Inflamação/sangue , Insulina/sangue , Interleucina-6/sangue , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
18.
J Pharm Sci ; 107(11): 2869-2882, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30031026

RESUMO

Acute pancreatitis (AP) is a serious inflammatory disorder of the pancreas with considerable mortality. The clinical therapy is hampered due to lack of any approved drug for AP. In this study, we developed curcumin (cur)-loaded poly (lactic-co-glycolic acid) cur microparticles (CuMPs) for sustained release. CuMPs were prepared by emulsion solvent evaporation method and characterized for shape, size, compatibility, and entrapment efficiency. The in vitro drug release and in vivo pharmacokinetic studies confirmed sustained release pattern of cur from CuMPs. The pharmacodynamic study was conducted in cerulein induced AP model. Prophylactic treatment was planned with single dose of CuMPs (equivalent to 7.5 mg/kg of cur) and compared with free cur given orally (100 mg/kg) and intraperitoneally (7.5 mg/kg) daily for 7 days. Interestingly, the effects of CuMPs were superior compared to the free drug administered either orally or intraperitoneally through repeated administrations. CuMPs showed significant decrease of serum amylase and lipase levels, oxidative and nitrosative stress was also significantly decreased. Moreover, CuMPs impressively decreased inflammatory cytokines. Our results may pave a way to propose similar strategy for many of promising natural products to combat several oxidative stress-mediated disorders via sustained release microparticle approaches.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Curcumina/uso terapêutico , Preparações de Ação Retardada/química , Pancreatite/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Doença Aguda , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Apoptose/efeitos dos fármacos , Ceruletídeo , Curcumina/administração & dosagem , Curcumina/farmacocinética , Citocinas/análise , Liberação Controlada de Fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Ratos Sprague-Dawley
19.
Phytother Res ; 31(4): 591-623, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28295751

RESUMO

Pancreatitis is a gastrointestinal disease with a worldwide sharp surge during the past decade. Pancreatitis includes acute and chronic subtypes, which are graded based on the amount of pancreatic inflammation. Phytoconstituents represent a promising class of therapeutic agents with wide acceptability not only based on folk practices but sound presence of pharmacological and molecular evidences. Growing research evidence indicates that different molecular mechanisms are involved in their protective effect. Many phytoremedies have been tried for the treatment of pancreatic injuries and have shown success in preclinical animal models of pancreatitis. The literature was largely collected through PubMed and Google scholar database. A large proportion of phytochemicals targets the inflammatory cascade and modulates the overtly acting redox balance among which nuclear factor kappa-light-chain-enhancer of activated B cells is the key molecule. Inhibition of apoptosis (artemisinin, embelin), inflammasome (withaferin A), neutrophil rolling (fucoidan), Ca+2 release (caffeine), mitogen activated protein kinase (guggulsterone) and many other novel mechanisms apart from antioxidant effect have been postulated behind the protective effect of phytoconstituents. The present review deals to fill the gap of hitherto unavailable comprehensive review on various plant products screened for the treatment of pancreatitis. The possible mechanistic profile of these phytochemicals is summarized. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Pancreatite/tratamento farmacológico , Fitoterapia/métodos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...